Subsetting data frames
glimpse(lapd)
Rows: 68,564Columns: 35$ `Row ID` <chr> "3-1000027830ctFu", "3-1000155488ctFu",…$ Year <dbl> 2013, 2013, 2013, 2013, 2013, 2013, 201…$ `Department Title` <chr> "Police (LAPD)", "Police (LAPD)", "Poli…$ `Payroll Department` <dbl> 4301, 4302, 4301, 4301, 4302, 4302, 430…$ `Record Number` <dbl> 1000027830, 1000155488, 1000194958, 100…$ `Job Class Title` <chr> "Police Detective II", "Clerk Typist", …$ `Employment Type` <chr> "Full Time", "Full Time", "Full Time", …$ `Hourly or Event Rate` <dbl> 53.16, 23.77, 60.80, 60.98, 45.06, 34.4…$ `Projected Annual Salary` <dbl> 110998.08, 49623.67, 126950.40, 127326.…$ `Q1 Payments` <dbl> 24931.20, 11343.96, 24184.00, 29391.20,…$ `Q2 Payments` <dbl> 29181.61, 13212.37, 28327.20, 36591.20,…$ `Q3 Payments` <dbl> 26545.80, 11508.36, 28744.20, 32904.81,…$ `Q4 Payments` <dbl> 29605.30, 13442.53, 33224.88, 37234.03,…$ `Payments Over Base Pay` <dbl> 4499.12, 1844.82, 13192.43, 18034.53, 1…$ `% Over Base Pay` <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …$ `Total Payments` <dbl> 110263.91, 49507.22, 114480.28, 136121.…$ `Base Pay` <dbl> 105764.79, 47662.40, 101287.85, 118086.…$ `Permanent Bonus Pay` <dbl> 3174.12, 0.00, 7363.95, 7086.67, 0.00, …$ `Longevity Bonus Pay` <dbl> 0.00, 1310.82, 0.00, 0.00, 1251.19, 172…$ `Temporary Bonus Pay` <dbl> 1325.00, 0.00, 1205.00, 1325.00, 125.00…$ `Lump Sum Pay` <dbl> 0.00, 0.00, 2133.18, 0.00, 2068.80, 0.0…$ `Overtime Pay` <dbl> 0.00, 0.00, 4424.32, 9839.33, 0.00, 0.0…$ `Other Pay & Adjustments` <dbl> 0.00, 534.00, -1934.02, -216.47, -2068.…$ `Other Pay (Payroll Explorer)` <dbl> 4499.12, 1844.82, 8768.11, 8195.20, 137…$ MOU <chr> "24", "3", "24", "24", "12", "3", "24",…$ `MOU Title` <chr> "POLICE OFFICERS UNIT", "CLERICAL UNIT"…$ `FMS Department` <dbl> 70, 70, 70, 70, 70, 70, 70, 70, 70, 70,…$ `Job Class` <chr> "2223", "1358", "2227", "2232", "1839",…$ `Pay Grade` <chr> "2", "0", "1", "1", "0", "2", "3", "1",…$ `Average Health Cost` <dbl> 11651.40, 10710.24, 11651.40, 11651.40,…$ `Average Dental Cost` <dbl> 898.08, 405.24, 898.08, 898.08, 405.24,…$ `Average Basic Life` <dbl> 191.04, 11.40, 191.04, 191.04, 11.40, 1…$ `Average Benefit Cost` <dbl> 12740.52, 11126.88, 12740.52, 12740.52,…$ `Benefits Plan` <chr> "Police", "City", "Police", "Police", "…$ `Job Class Link` <chr> "http://per.lacity.org/perspecs/2223.pd…
lapd <- clean_names(lapd)glimpse(lapd)
Rows: 68,564Columns: 35$ row_id <chr> "3-1000027830ctFu", "3-1000155488ctFu", "3-…$ year <dbl> 2013, 2013, 2013, 2013, 2013, 2013, 2013, 2…$ department_title <chr> "Police (LAPD)", "Police (LAPD)", "Police (…$ payroll_department <dbl> 4301, 4302, 4301, 4301, 4302, 4302, 4301, 4…$ record_number <dbl> 1000027830, 1000155488, 1000194958, 1000232…$ job_class_title <chr> "Police Detective II", "Clerk Typist", "Pol…$ employment_type <chr> "Full Time", "Full Time", "Full Time", "Ful…$ hourly_or_event_rate <dbl> 53.16, 23.77, 60.80, 60.98, 45.06, 34.42, 4…$ projected_annual_salary <dbl> 110998.08, 49623.67, 126950.40, 127326.24, …$ q1_payments <dbl> 24931.20, 11343.96, 24184.00, 29391.20, 208…$ q2_payments <dbl> 29181.61, 13212.37, 28327.20, 36591.20, 241…$ q3_payments <dbl> 26545.80, 11508.36, 28744.20, 32904.81, 215…$ q4_payments <dbl> 29605.30, 13442.53, 33224.88, 37234.03, 252…$ payments_over_base_pay <dbl> 4499.12, 1844.82, 13192.43, 18034.53, 1376.…$ percent_over_base_pay <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…$ total_payments <dbl> 110263.91, 49507.22, 114480.28, 136121.24, …$ base_pay <dbl> 105764.79, 47662.40, 101287.85, 118086.71, …$ permanent_bonus_pay <dbl> 3174.12, 0.00, 7363.95, 7086.67, 0.00, 0.00…$ longevity_bonus_pay <dbl> 0.00, 1310.82, 0.00, 0.00, 1251.19, 1726.16…$ temporary_bonus_pay <dbl> 1325.00, 0.00, 1205.00, 1325.00, 125.00, 68…$ lump_sum_pay <dbl> 0.00, 0.00, 2133.18, 0.00, 2068.80, 0.00, 0…$ overtime_pay <dbl> 0.00, 0.00, 4424.32, 9839.33, 0.00, 0.00, 4…$ other_pay_adjustments <dbl> 0.00, 534.00, -1934.02, -216.47, -2068.80, …$ other_pay_payroll_explorer <dbl> 4499.12, 1844.82, 8768.11, 8195.20, 1376.19…$ mou <chr> "24", "3", "24", "24", "12", "3", "24", "24…$ mou_title <chr> "POLICE OFFICERS UNIT", "CLERICAL UNIT", "P…$ fms_department <dbl> 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70,…$ job_class <chr> "2223", "1358", "2227", "2232", "1839", "22…$ pay_grade <chr> "2", "0", "1", "1", "0", "2", "3", "1", "B"…$ average_health_cost <dbl> 11651.40, 10710.24, 11651.40, 11651.40, 107…$ average_dental_cost <dbl> 898.08, 405.24, 898.08, 898.08, 405.24, 405…$ average_basic_life <dbl> 191.04, 11.40, 191.04, 191.04, 11.40, 11.40…$ average_benefit_cost <dbl> 12740.52, 11126.88, 12740.52, 12740.52, 111…$ benefits_plan <chr> "Police", "City", "Police", "Police", "City…$ job_class_link <chr> "http://per.lacity.org/perspecs/2223.pdf", …
select()
slice()
and filter()
select
is used to select certain variables in the data frame.
select(lapd, year, base_pay)
# A tibble: 68,564 × 2 year base_pay <dbl> <dbl>1 2013 105765.2 2013 47662.3 2013 101288.4 2013 118087.5 2013 90322.6 2013 62770.# … with 68,558 more rows
select
is used to select certain variables in the data frame.
select(lapd, year, base_pay)
# A tibble: 68,564 × 2 year base_pay <dbl> <dbl>1 2013 105765.2 2013 47662.3 2013 101288.4 2013 118087.5 2013 90322.6 2013 62770.# … with 68,558 more rows
lapd %>% select(year, base_pay)
# A tibble: 68,564 × 2 year base_pay <dbl> <dbl>1 2013 105765.2 2013 47662.3 2013 101288.4 2013 118087.5 2013 90322.6 2013 62770.# … with 68,558 more rows
select
can also be used to drop certain variables if used with a negative sign.
select(lapd, -row_id, -department_title)
# A tibble: 68,564 × 33 year payroll_department record_number job_class_title employment_type <dbl> <dbl> <dbl> <chr> <chr> 1 2013 4301 1000027830 Police Detective II Full Time 2 2013 4302 1000155488 Clerk Typist Full Time 3 2013 4301 1000194958 Police Sergeant I Full Time 4 2013 4301 1000232317 Police Lieutenant I Full Time 5 2013 4302 1000329284 Principal Storekeeper Full Time 6 2013 4302 1001124320 Police Service Represe… Full Time # … with 68,558 more rows, and 28 more variables: hourly_or_event_rate <dbl>,# projected_annual_salary <dbl>, q1_payments <dbl>, q2_payments <dbl>,# q3_payments <dbl>, q4_payments <dbl>, payments_over_base_pay <dbl>,# percent_over_base_pay <dbl>, total_payments <dbl>, base_pay <dbl>,# permanent_bonus_pay <dbl>, longevity_bonus_pay <dbl>,# temporary_bonus_pay <dbl>, lump_sum_pay <dbl>, overtime_pay <dbl>,# other_pay_adjustments <dbl>, other_pay_payroll_explorer <dbl>, mou <chr>, …
starts_with()
ends_with()
contains()
select(lapd, starts_with("q"))
# A tibble: 68,564 × 4 q1_payments q2_payments q3_payments q4_payments <dbl> <dbl> <dbl> <dbl>1 24931. 29182. 26546. 29605.2 11344. 13212. 11508. 13443.3 24184 28327. 28744. 33225.4 29391. 36591. 32905. 37234.5 20813 24136 21518. 25231.6 16057. 17927. 14150. 17052.# … with 68,558 more rows
select(lapd, ends_with("pay"))
# A tibble: 68,564 × 8 payments_over_ba… percent_over_bas… base_pay permanent_bonus… longevity_bonus… <dbl> <dbl> <dbl> <dbl> <dbl>1 4499. 0 105765. 3174. 0 2 1845. 0 47662. 0 1311.3 13192. 0 101288. 7364. 0 4 18035. 0 118087. 7087. 0 5 1376. 0 90322. 0 1251.6 2415. 0 62770. 0 1726.# … with 68,558 more rows, and 3 more variables: temporary_bonus_pay <dbl>,# lump_sum_pay <dbl>, overtime_pay <dbl>
select(lapd, contains("pay"))
# A tibble: 68,564 × 17 payroll_department q1_payments q2_payments q3_payments q4_payments <dbl> <dbl> <dbl> <dbl> <dbl>1 4301 24931. 29182. 26546. 29605.2 4302 11344. 13212. 11508. 13443.3 4301 24184 28327. 28744. 33225.4 4301 29391. 36591. 32905. 37234.5 4302 20813 24136 21518. 25231.6 4302 16057. 17927. 14150. 17052.# … with 68,558 more rows, and 12 more variables: payments_over_base_pay <dbl>,# percent_over_base_pay <dbl>, total_payments <dbl>, base_pay <dbl>,# permanent_bonus_pay <dbl>, longevity_bonus_pay <dbl>,# temporary_bonus_pay <dbl>, lump_sum_pay <dbl>, overtime_pay <dbl>,# other_pay_adjustments <dbl>, other_pay_payroll_explorer <dbl>,# pay_grade <chr>
select()
slice()
and filter()
slice()
subsetting rows based on a row number.
The data below include all the rows from third to seventh. Including third and seventh.
slice(lapd, 3:7)
# A tibble: 5 × 35 row_id year department_title payroll_departm… record_number job_class_title <chr> <dbl> <chr> <dbl> <dbl> <chr> 1 3-1000194958ctFu 2013 Police (LAPD) 4301 1000194958 Police Sergean…2 3-1000232317ctFu 2013 Police (LAPD) 4301 1000232317 Police Lieuten…3 3-1000329284ctFu 2013 Police (LAPD) 4302 1000329284 Principal Stor…4 3-1001124320ctFu 2013 Police (LAPD) 4302 1001124320 Police Service…5 3-1001221822ctFu 2013 Police (LAPD) 4301 1001221822 Police Officer…# … with 29 more variables: employment_type <chr>, hourly_or_event_rate <dbl>,# projected_annual_salary <dbl>, q1_payments <dbl>, q2_payments <dbl>,# q3_payments <dbl>, q4_payments <dbl>, payments_over_base_pay <dbl>,# percent_over_base_pay <dbl>, total_payments <dbl>, base_pay <dbl>,# permanent_bonus_pay <dbl>, longevity_bonus_pay <dbl>,# temporary_bonus_pay <dbl>, lump_sum_pay <dbl>, overtime_pay <dbl>,# other_pay_adjustments <dbl>, other_pay_payroll_explorer <dbl>, mou <chr>, …
slice()
subsetting rows based on a row number.
The data below include all the rows from third to seventh. Including third and seventh.
slice(lapd, 3:7)
# A tibble: 5 × 35 row_id year department_title payroll_departm… record_number job_class_title <chr> <dbl> <chr> <dbl> <dbl> <chr> 1 3-1000194958ctFu 2013 Police (LAPD) 4301 1000194958 Police Sergean…2 3-1000232317ctFu 2013 Police (LAPD) 4301 1000232317 Police Lieuten…3 3-1000329284ctFu 2013 Police (LAPD) 4302 1000329284 Principal Stor…4 3-1001124320ctFu 2013 Police (LAPD) 4302 1001124320 Police Service…5 3-1001221822ctFu 2013 Police (LAPD) 4301 1001221822 Police Officer…# … with 29 more variables: employment_type <chr>, hourly_or_event_rate <dbl>,# projected_annual_salary <dbl>, q1_payments <dbl>, q2_payments <dbl>,# q3_payments <dbl>, q4_payments <dbl>, payments_over_base_pay <dbl>,# percent_over_base_pay <dbl>, total_payments <dbl>, base_pay <dbl>,# permanent_bonus_pay <dbl>, longevity_bonus_pay <dbl>,# temporary_bonus_pay <dbl>, lump_sum_pay <dbl>, overtime_pay <dbl>,# other_pay_adjustments <dbl>, other_pay_payroll_explorer <dbl>, mou <chr>, …
filter()
subsetting rows based on a condition.
The data below includes rows when the recorded year is 2018.
filter(lapd, year == 2018)
# A tibble: 14,824 × 35 row_id year department_title payroll_departm… record_number job_class_title <chr> <dbl> <chr> <dbl> <dbl> <chr> 1 8-1000027830ctFu 2018 Police (LAPD) 4301 1000027830 Police Detecti…2 8-1000194958ctFu 2018 Police (LAPD) 4301 1000194958 Police Sergean…3 8-1000232317ctFu 2018 Police (LAPD) 4301 1000232317 Police Lieuten…4 8-1001124320ctFu 2018 Police (LAPD) 4302 1001124320 Police Service…5 8-1001221822ctFu 2018 Police (LAPD) 4301 1001221822 Police Officer…6 8-1001317832ctFu 2018 Police (LAPD) 4301 1001317832 Police Officer…# … with 14,818 more rows, and 29 more variables: employment_type <chr>,# hourly_or_event_rate <dbl>, projected_annual_salary <dbl>,# q1_payments <dbl>, q2_payments <dbl>, q3_payments <dbl>, q4_payments <dbl>,# payments_over_base_pay <dbl>, percent_over_base_pay <dbl>,# total_payments <dbl>, base_pay <dbl>, permanent_bonus_pay <dbl>,# longevity_bonus_pay <dbl>, temporary_bonus_pay <dbl>, lump_sum_pay <dbl>,# overtime_pay <dbl>, other_pay_adjustments <dbl>, …
Operator | Description |
---|---|
< | Less than |
> | Greater than |
<= | Less than or equal to |
>= | Greater than or equal to |
== | Equal to |
!= | Not equal to |
Operator | Description |
---|---|
& | and |
| | or |
Operator | Description |
---|---|
: | creates a series of numbers |
%in% | checks if an element is in a vector |
%*% | matrix multiplication |
Q. According to datausa.io Los Angeles had a median household income of $62474 in 2018. How many LAPD staff members had a base pay higher than $62474 in year 2018 according to this data?
Median household income is not the same thing as median employee income. Our aim is data wrangling and not necessarily statistical analysis for now.
lapd %>% filter(year == 2018 & base_pay > 62474)
# A tibble: 11,690 × 35 row_id year department_title payroll_departm… record_number job_class_title <chr> <dbl> <chr> <dbl> <dbl> <chr> 1 8-1000027830ctFu 2018 Police (LAPD) 4301 1000027830 Police Detecti…2 8-1000194958ctFu 2018 Police (LAPD) 4301 1000194958 Police Sergean…3 8-1000232317ctFu 2018 Police (LAPD) 4301 1000232317 Police Lieuten…4 8-1001124320ctFu 2018 Police (LAPD) 4302 1001124320 Police Service…5 8-1001221822ctFu 2018 Police (LAPD) 4301 1001221822 Police Officer…6 8-1001317832ctFu 2018 Police (LAPD) 4301 1001317832 Police Officer…# … with 11,684 more rows, and 29 more variables: employment_type <chr>,# hourly_or_event_rate <dbl>, projected_annual_salary <dbl>,# q1_payments <dbl>, q2_payments <dbl>, q3_payments <dbl>, q4_payments <dbl>,# payments_over_base_pay <dbl>, percent_over_base_pay <dbl>,# total_payments <dbl>, base_pay <dbl>, permanent_bonus_pay <dbl>,# longevity_bonus_pay <dbl>, temporary_bonus_pay <dbl>, lump_sum_pay <dbl>,# overtime_pay <dbl>, other_pay_adjustments <dbl>, …
lapd %>% filter(year == 2018 & base_pay > 62474) %>% nrow()
[1] 11690
Q. How many observations are available between 2013 and 2015 including 2013 and 2015?
Q. How many observations are available between 2013 and 2015 including 2013 and 2015?
lapd %>% filter(year >= 2013 & year <= 2015)
# A tibble: 40,227 × 35 row_id year department_title payroll_departm… record_number job_class_title <chr> <dbl> <chr> <dbl> <dbl> <chr> 1 3-1000027830ctFu 2013 Police (LAPD) 4301 1000027830 Police Detecti…2 3-1000155488ctFu 2013 Police (LAPD) 4302 1000155488 Clerk Typist 3 3-1000194958ctFu 2013 Police (LAPD) 4301 1000194958 Police Sergean…4 3-1000232317ctFu 2013 Police (LAPD) 4301 1000232317 Police Lieuten…5 3-1000329284ctFu 2013 Police (LAPD) 4302 1000329284 Principal Stor…6 3-1001124320ctFu 2013 Police (LAPD) 4302 1001124320 Police Service…# … with 40,221 more rows, and 29 more variables: employment_type <chr>,# hourly_or_event_rate <dbl>, projected_annual_salary <dbl>,# q1_payments <dbl>, q2_payments <dbl>, q3_payments <dbl>, q4_payments <dbl>,# payments_over_base_pay <dbl>, percent_over_base_pay <dbl>,# total_payments <dbl>, base_pay <dbl>, permanent_bonus_pay <dbl>,# longevity_bonus_pay <dbl>, temporary_bonus_pay <dbl>, lump_sum_pay <dbl>,# overtime_pay <dbl>, other_pay_adjustments <dbl>, …
Q. How many observations are available between 2013 and 2015 including 2013 and 2015?
lapd %>% filter(year >= 2013 & year <= 2015) %>% nrow()
[1] 40227
Q. How many LAPD staff were employed full time in 2018?
lapd %>% filter(employment_type == "Full Time" & year == 2018) %>% nrow()
[1] 14664
We have done all sorts of selections, slicing, filtering on lapd
but it has not changed at all. Why do you think so?
glimpse(lapd)
Rows: 68,564Columns: 35$ row_id <chr> "3-1000027830ctFu", "3-1000155488ctFu", "3-…$ year <dbl> 2013, 2013, 2013, 2013, 2013, 2013, 2013, 2…$ department_title <chr> "Police (LAPD)", "Police (LAPD)", "Police (…$ payroll_department <dbl> 4301, 4302, 4301, 4301, 4302, 4302, 4301, 4…$ record_number <dbl> 1000027830, 1000155488, 1000194958, 1000232…$ job_class_title <chr> "Police Detective II", "Clerk Typist", "Pol…$ employment_type <chr> "Full Time", "Full Time", "Full Time", "Ful…$ hourly_or_event_rate <dbl> 53.16, 23.77, 60.80, 60.98, 45.06, 34.42, 4…$ projected_annual_salary <dbl> 110998.08, 49623.67, 126950.40, 127326.24, …$ q1_payments <dbl> 24931.20, 11343.96, 24184.00, 29391.20, 208…$ q2_payments <dbl> 29181.61, 13212.37, 28327.20, 36591.20, 241…$ q3_payments <dbl> 26545.80, 11508.36, 28744.20, 32904.81, 215…$ q4_payments <dbl> 29605.30, 13442.53, 33224.88, 37234.03, 252…$ payments_over_base_pay <dbl> 4499.12, 1844.82, 13192.43, 18034.53, 1376.…$ percent_over_base_pay <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…$ total_payments <dbl> 110263.91, 49507.22, 114480.28, 136121.24, …$ base_pay <dbl> 105764.79, 47662.40, 101287.85, 118086.71, …$ permanent_bonus_pay <dbl> 3174.12, 0.00, 7363.95, 7086.67, 0.00, 0.00…$ longevity_bonus_pay <dbl> 0.00, 1310.82, 0.00, 0.00, 1251.19, 1726.16…$ temporary_bonus_pay <dbl> 1325.00, 0.00, 1205.00, 1325.00, 125.00, 68…$ lump_sum_pay <dbl> 0.00, 0.00, 2133.18, 0.00, 2068.80, 0.00, 0…$ overtime_pay <dbl> 0.00, 0.00, 4424.32, 9839.33, 0.00, 0.00, 4…$ other_pay_adjustments <dbl> 0.00, 534.00, -1934.02, -216.47, -2068.80, …$ other_pay_payroll_explorer <dbl> 4499.12, 1844.82, 8768.11, 8195.20, 1376.19…$ mou <chr> "24", "3", "24", "24", "12", "3", "24", "24…$ mou_title <chr> "POLICE OFFICERS UNIT", "CLERICAL UNIT", "P…$ fms_department <dbl> 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70,…$ job_class <chr> "2223", "1358", "2227", "2232", "1839", "22…$ pay_grade <chr> "2", "0", "1", "1", "0", "2", "3", "1", "B"…$ average_health_cost <dbl> 11651.40, 10710.24, 11651.40, 11651.40, 107…$ average_dental_cost <dbl> 898.08, 405.24, 898.08, 898.08, 405.24, 405…$ average_basic_life <dbl> 191.04, 11.40, 191.04, 191.04, 11.40, 11.40…$ average_benefit_cost <dbl> 12740.52, 11126.88, 12740.52, 12740.52, 111…$ benefits_plan <chr> "Police", "City", "Police", "Police", "City…$ job_class_link <chr> "http://per.lacity.org/perspecs/2223.pdf", …
Moving forward we are only going to focus on year 2018, and use job_class_title
, employment_type
, and base_pay
. Let's clean our data accordingly and move on with the smaller lapd
data that we need.
lapd %>% filter(year == 2018) %>% select(job_class_title, employment_type, base_pay)
# A tibble: 14,824 × 3 job_class_title employment_type base_pay <chr> <chr> <dbl>1 Police Detective II Full Time 119322.2 Police Sergeant I Full Time 113271.3 Police Lieutenant II Full Time 148116 4 Police Service Representative II Full Time 78677.5 Police Officer III Full Time 109374.6 Police Officer II Full Time 95002.# … with 14,818 more rows
lapd <- lapd %>% filter(year == 2018) %>% select(job_class_title, employment_type, base_pay)
glimpse(lapd)
Rows: 14,824Columns: 3$ job_class_title <chr> "Police Detective II", "Police Sergeant I", "Police Li…$ employment_type <chr> "Full Time", "Full Time", "Full Time", "Full Time", "F…$ base_pay <dbl> 119321.60, 113270.70, 148116.00, 78676.87, 109373.63, …
Goal:
Create a new variable called base_pay_k
that represents base_pay
in thousand dollars.
lapd %>% mutate(base_pay_k = base_pay/1000)
# A tibble: 14,824 × 4 job_class_title employment_type base_pay base_pay_k <chr> <chr> <dbl> <dbl>1 Police Detective II Full Time 119322. 119. 2 Police Sergeant I Full Time 113271. 113. 3 Police Lieutenant II Full Time 148116 148. 4 Police Service Representative II Full Time 78677. 78.75 Police Officer III Full Time 109374. 109. 6 Police Officer II Full Time 95002. 95.0# … with 14,818 more rows
glimpse(lapd)
Rows: 14,824Columns: 3$ job_class_title <chr> "Police Detective II", "Police Sergeant I", "Police Li…$ employment_type <chr> "Full Time", "Full Time", "Full Time", "Full Time", "F…$ base_pay <dbl> 119321.60, 113270.70, 148116.00, 78676.87, 109373.63, …
Goal:
Create a new variable called base_pay_level
which has Less Than 0
, No Income
, Less than Median and Greater than 0
and Greater than Median
. We will consider $62474 as the median (from previous lecture).
Let's first check to see there is anyone earning exactly the median value.
lapd %>% filter(base_pay == 62474)
# A tibble: 0 × 3# … with 3 variables: job_class_title <chr>, employment_type <chr>,# base_pay <dbl>
lapd %>% mutate(base_pay_level = case_when( base_pay < 0 ~ "Less than 0", base_pay == 0 ~ "No Income", base_pay < 62474 & base_pay > 0 ~ "Less than Median, Greater than 0", base_pay > 62474 ~ "Greater than Median"))
# A tibble: 14,824 × 4 job_class_title employment_type base_pay base_pay_level <chr> <chr> <dbl> <chr> 1 Police Detective II Full Time 119322. Greater than Median2 Police Sergeant I Full Time 113271. Greater than Median3 Police Lieutenant II Full Time 148116 Greater than Median4 Police Service Representative II Full Time 78677. Greater than Median5 Police Officer III Full Time 109374. Greater than Median6 Police Officer II Full Time 95002. Greater than Median# … with 14,818 more rows
We can't really see what we have created
lapd %>% mutate(base_pay_level = case_when( base_pay < 0 ~ "Less than 0", base_pay == 0 ~ "No Income", base_pay < 62474 & base_pay > 0 ~ "Less than Median, Greater than 0", base_pay > 62474 ~ "Greater than Median")) %>% select(base_pay_level)
# A tibble: 14,824 × 1 base_pay_level <chr> 1 Greater than Median2 Greater than Median3 Greater than Median4 Greater than Median5 Greater than Median6 Greater than Median# … with 14,818 more rows
We can use pipes with ggplot too!
lapd %>% mutate(base_pay_level = case_when( base_pay < 0 ~ "Less than 0", base_pay == 0 ~ "No Income", base_pay < 62474 & base_pay > 0 ~ "Less than Median, Greater than 0", base_pay > 62474 ~ "Greater than Median")) %>% select(base_pay_level) %>% ggplot(aes(x = base_pay_level)) + geom_bar()
glimpse(lapd)
Rows: 14,824Columns: 3$ job_class_title <chr> "Police Detective II", "Police Sergeant I", "Police Li…$ employment_type <chr> "Full Time", "Full Time", "Full Time", "Full Time", "F…$ base_pay <dbl> 119321.60, 113270.70, 148116.00, 78676.87, 109373.63, …
Goal:
Make job_class_title
and employment_type
factor variables.
lapd %>% mutate(employment_type = as.factor(employment_type), job_class_title = as.factor(job_class_title))
# A tibble: 14,824 × 3 job_class_title employment_type base_pay <fct> <fct> <dbl>1 Police Detective II Full Time 119322.2 Police Sergeant I Full Time 113271.3 Police Lieutenant II Full Time 148116 4 Police Service Representative II Full Time 78677.5 Police Officer III Full Time 109374.6 Police Officer II Full Time 95002.# … with 14,818 more rows
as.factor()
- makes a vector factoras.numeric()
- makes a vector numericas.integer()
- makes a vector integeras.double()
- makes a vector doubleas.character()
- makes a vector character
Once again we did not "save"
anything into lapd
. As we work on data cleaning it makes sense not to "save" the data frames. Once we see the final data frame we want then we can "save" (i.e. overwrite) it.
In your lecture notes, you can do all the changes in this lecture in one long set of piped code. That's the beauty of piping!
lapd <- lapd %>% clean_names() %>% filter(year == 2018) %>% select(job_class_title, employment_type, base_pay) %>% mutate(employment_type = as.factor(employment_type), job_class_title = as.factor(job_class_title), base_pay_level = case_when( base_pay < 0 ~ "Less than 0", base_pay == 0 ~ "No Income", base_pay < 62474 & base_pay > 0 ~ "Less than Median, Greater than 0", base_pay > 62474 ~ "Greater than Median"))
The functions clean_names()
, select()
, filter()
, mutate()
all take a data frame as the first argument. Even though we do not see it, the data frame is piped through from the previous step of code at each step.
When we use these functions without the %>%
we have to include the data frame explicitly.
Data frame is used as the first argument
clean_names(lapd)
# A tibble: 14,824 × 3 job_class_title employment_type base_pay <chr> <chr> <dbl>1 Police Detective II Full Time 119322.2 Police Sergeant I Full Time 113271.3 Police Lieutenant II Full Time 148116 4 Police Service Representative II Full Time 78677.5 Police Officer III Full Time 109374.6 Police Officer II Full Time 95002.# … with 14,818 more rows
Data frame is piped
lapd %>% clean_names()
# A tibble: 14,824 × 3 job_class_title employment_type base_pay <chr> <chr> <dbl>1 Police Detective II Full Time 119322.2 Police Sergeant I Full Time 113271.3 Police Lieutenant II Full Time 148116 4 Police Service Representative II Full Time 78677.5 Police Officer III Full Time 109374.6 Police Officer II Full Time 95002.# … with 14,818 more rows
Keyboard shortcuts
↑, ←, Pg Up, k | Go to previous slide |
↓, →, Pg Dn, Space, j | Go to next slide |
Home | Go to first slide |
End | Go to last slide |
Number + Return | Go to specific slide |
b / m / f | Toggle blackout / mirrored / fullscreen mode |
c | Clone slideshow |
p | Toggle presenter mode |
t | Restart the presentation timer |
?, h | Toggle this help |
Esc | Back to slideshow |